

# Hydrogen Promotion Initiatives in Portugal

Rei Fernandes

Research Group on Energy & Sustainable Development Instituto Superior Técnico





# Promotion of H<sub>2</sub> in Europe

- EC funding H&FC projects since 80's
  - High Level Group for Hydrogen & Fuel
     Cells Technologies : October 2002
  - Hydrogen & Fuel Cell Technology
     Platform : January 2004





# Participation in HFP





# H<sub>2</sub> related projects in Portugal

- Demonstration:
  - **+ CUTE**
  - Virtual Fuel Cell
- Policy:
  - + HySociety
  - HyNet
  - HyWays
  - + HyCo





# H<sub>2</sub> demonstrations in Portugal

#### **Demonstration**

- **+ CUTE**
- Virtual FuelCell Powerplant











# H<sub>2</sub> policy-related Projects

#### **HySociety**

#### Policy:

- **HyNet**

#### **HyNet**

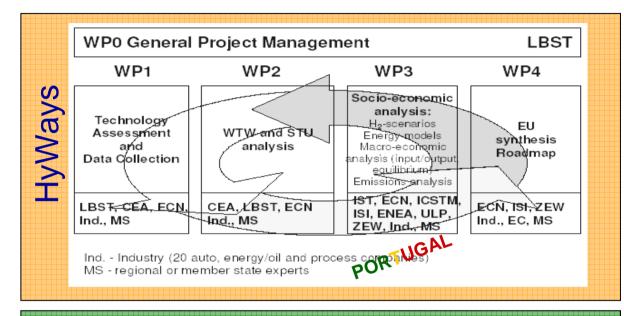
First-stage European H<sub>2</sub> Roadmap

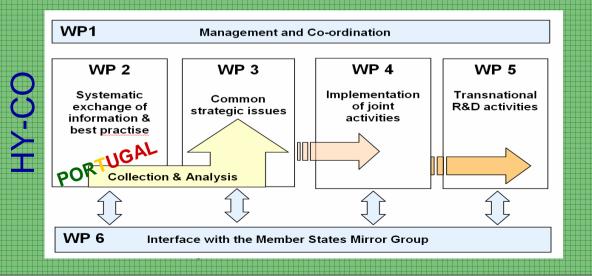
- 2002-2005
- HySociety Coordination: PT



hysociety

A CHALLENGING EUROPEAN HYDROGEN VISION direct H2 production from renewables Hydrogen-oriented de-carbonised H2 society economy increasing de-carbonisation of H2 production; renewables, fossil fuel with sequestration, new ruchear 2050 Widespread H2 pipeline infrastructure Fuel cells become dominant Interconnection of local H2 distribution grids: tochnology in transport, in significant H2 production from renewables, incl distributed power generation. Biomass gasification 2020 and in micro-applications H2 produced from fossil fuels with C sequestration Clusters of bical H2 distribution grids; H. prime fuel choice for FC vehicles Local clusters of H<sub>2</sub> filling stations H<sub>2</sub> transport by road, and local H2 Significant growth in distributed power generation with substantial penetration of FCs production at refuelling station (reforming 2<sup>nd</sup> generation on-beard storage (long-range) Low-cost high temperature fuel cell systems; H, produced by reforming natural ga FCs commercial in micro-applications FC vehicles competitive for passenger cars SOFC systems atmospheric and hybrid commercial (<10MW) and electrolysis First H2 fleets (1st generation H2 storage) Series production of FC vehicles for fleets (direct H2 and on-board reforming) 2000 and other transport (boats); FC for auxiliary power unit Stationary low temperature fuel cell systems (PEM) (<300kW) Stationary high-temperature fuel cells systems (MCFC/SOFC) (<500 Fossil fuel-based H2 ICE developed; Demonstration fleets of FC-buses economy Stationary low temperature fuel cell systems for niche commercial (<50kW) 2000




# H<sub>2</sub> policy-related Projects

### Policy:

- HySociety
- HyNet
- HyWays
- HyCo









# Initiatives in Portugal

- 2003
- 2004: Évora



■ 2005: II Forum



- First meeting focused on H<sub>2</sub> energy systems for Portugal
- Initial brainstorming
- Questions & needs

#### **Debate**

- Industry: market opportunities
- Government:
  - H<sub>2</sub> meeting Govt. policy targets
  - Incentives
- Research: mechanisms required
- □ Vision : future energy mix
  - Renewable energy targets
  - Import dependency

Research
Group on
Energy &
Sustainable
Development

Coimbra, 27 May 2008



# Some National H<sub>2</sub> Related Projects

- Technology Platform
- H2REM
- Promotion & Dissemination of H in PT
- Green Hotel
- Hi-Po
- EDEN
- Transnational call (HY-CO) with DK, NL, SL, FR & PT



# The Hi-Po Project





- By building and evaluating scenarios with stakeholders for the future of hydrogen in Portugal
  - not prediction of future
  - study of consequences of possible futures, to help in the decision making process
- Scenarios or pathways to be used in EDEN project for Roadmap for Portugal



### Methodology I



#### 1. SCOPE

- Literature review
- Extended list of stakeholders
- Stakeholders' meetings for the definition of methodology

#### 2. SCENARIOS DEVELOPMENT

- Scenarios workshop
- Scenarios development
- Consultation with experts
- Final set of scenarios





# Methodology II



#### 3. MULTI-CRITERIA ANALYSIS

- Definition of stakeholders' panel
- Multi-criteria mapping interviews
- Analysis of the interviews' results

#### 4. PATHWAYS & ROADMAP

 Pathways analysis and contribution for the definition of a hydrogen roadmap



#### Final set of scenarios



- 1. Dominant renewables
- 2. Centralized non renewable and bioenergy
- 3. Decentralized electricity
- 4. Decentralized natural gas
- 5. Small scale and liquid fuels





#### Scenarios 1 & 2



#### 1. Dominant Renewables

- centralized production of hydrogen
  - based exclusively on renewable energy sources
- distributed by pipelines to refuelling stations
- for transport, industry & residential uses.

#### 2. Centralized non renewable & bioenergy

- centralized production of hydrogen
  - based on natural gas & coal, both with carbon capture and storage (CCS), nuclear, biomass and biogas
- distributed by pipelines to refuelling stations, airports & ports for transport use





# 2. Centralized non renewable & bioenergy







#### Scenarios 3-5

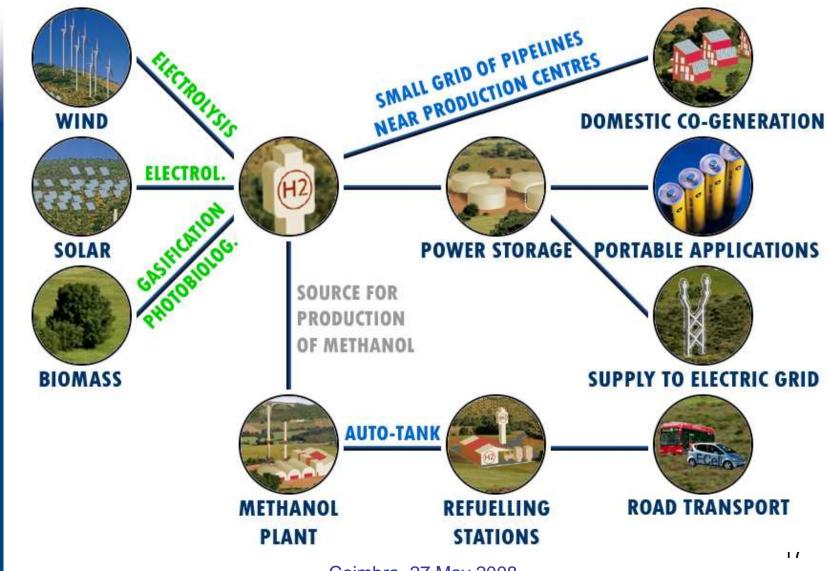


#### 3. Decentralized electricity

- decentralized production of H<sub>2</sub>
  - electricity grid on-site electrolysers for road transport, industry & residential CHP

#### 4. Decentralized NG

- decentralized production of H<sub>2</sub>
  - NG grid on-site reformers for road transport.
  - Coal power plants with CCS hydrogen for nearby refuelling stations and industries


#### 5. Small scale & liquid fuels

- + H<sub>2</sub> for remote communities based on renewable sources, mainly wind, solar & biomass
  - residential CHP & energy storage for the grid
- Main use of H<sub>2</sub> production of H<sub>2</sub> rich liquid fuels, such as methanol, which are the dominant fuels for road transport





# 5. Small scale & liquid fuels



Research
Group on
Energy &
Sustainable
Development



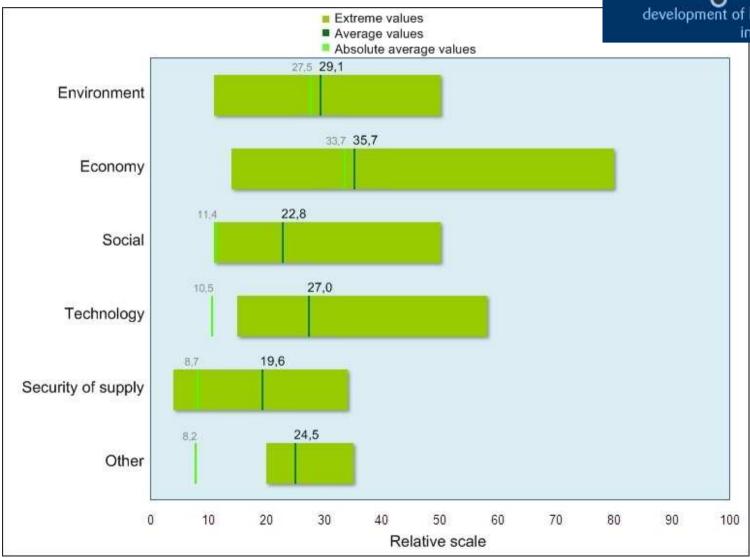
Coimbra, 27 May 2008





- Five scenarios thoroughly assessed through a multi-criteria mapping process in 18 individual interviews
- Stakeholders asked to create measurable criteria to evaluate the scenarios and to give a weighting to them






- 2-7 criteria created per stakeholder, average of more than 4
- Criteria grouped in 6 categories:
  - Economy (most common: investment and production costs)
  - Environment (emissions, impacts)
  - Security of supply (endogenous resources)
  - Social (public acceptance, diversity)
  - Technology (technological development, efficiency)
  - Other







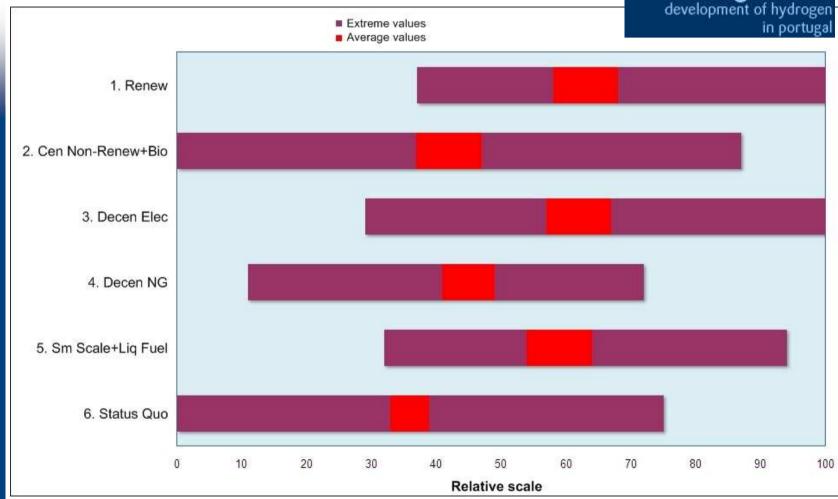


Research Group on Energy & Sustainable Development



Coimbra, 27 May 2008






#### Main conclusions:

- No scenario identified as a clear winner out of the evaluation process
- Dominant idea across most of the stakeholders is that the future of hydrogen in Portugal will not be focused on any of these scenarios but on a mix of several
- Stakeholders more concerned about the challenges that the hydrogen economy has to face, rather than highlighting its opportunities. This is evident in the higher weights given to economic and technological criteria over the environmental and security of supply ones













#### Sources:

- Renewable sources should have a prevailing role in the production of hydrogen, namely wind and solar
- Natural gas and coal with CCS mentioned as inevitable sources for the production of hydrogen, due to its availability and low costs
- Nuclear far from being a political option in the short and even in the long term for Portugal







#### Production & distribution:

- No clear preference for centralized or decentralized production of hydrogen
- Decentralized advocates stressed this option to be the future of energy production, essentially if based on renewable sources
- Electrolysis as a limiting factor for the hydrogen economy due to its low efficiency







#### End-Use:

- Road transport rises as a definitive winner for the use of H<sub>2</sub>
- Co-generation in industry & residential less consensual, due to the lower efficiency of many conversions
- Pumping water upstream into dams indicated as a more adequate solution than to store power as hydrogen derived from renewable energy sources



# Challenges & opportunities

- Costs & technological development
- Foster R&D
  - more efficient & less expensive technologies
  - promote policies to support this energy carrier
- Some stakeholders: costs are a false issue in the time scale considered
  - rising costs of fossil fuel & internalization of environmental impacts will allow more sustainable technologies to become competitive
- Environment & security of supply as main driving forces for the H<sub>2</sub> economy, mostly due to the substitution of fossil fuels
- Positive image of H<sub>2</sub> stakeholders did not consider public acceptance as limiting factor in PT





# Thank You for your attention

Rei Fernandes reifernandes@ist.utl.pt

